Commissioning compensator‐based IMRT on the Pinnacle treatment planning system
نویسندگان
چکیده
We present a systematic approach to commissioning of the compensator-based IMRT in Pinnacle treatment planning system for commercially manufactured brass compensators. Some model parameters for the beams modulated by the variable-thickness compensators can only be associated with a single compensator thickness. To intelligently choose that thickness for beam modeling, we empirically determined the most probable filter thickness occurring within the modulated portion of the compensators typically used in clinics. We demonstrated that a set of relative output factors measured with the brass slab of most probable thickness (2 cm) differs from the traditionally used open field set, and leads to improved agreement between measurements and calculations, particularly for the larger field sizes. By iteratively adjusting the modifier scatter factor and filter density, the calculated effective attenuation of the flat filters was brought to within 2% of the ion chamber measurement for the clinically-relevant range of filter thicknesses, depths and filed sizes. Beam hardening representation in Pinnacle provides for adequate depth dose modeling beyond the depth of about 5 cm. Disagreement at shallower depth for the large field sizes is likely due to the algorithm's inability to account for the low-energy scattered photons generated in the filter. The average ion chamber point dose error at isocenter for ten clinical compensator-based IMRT plans was under 1%. A biplanar 3D diode dosimeter was calibrated and validated for use with the compensators. The average gamma analysis (3%/3 mm) passing rate for ten IMRT plans was 98.9% ± 1.0%. The device is particularly attractive because it easily generates dose comparisons at both the fraction and beam levels. Overlaying dose profiles for individual beams would easily uncover any errors in compensator orientation.
منابع مشابه
Step-and-Shoot versus Compensator-based IMRT: Calculation and Comparison of Integral Dose in Non-tumoral and Target Organs in Prostate Cancer
Introduction Intensity-Modulated Radiotherapy (IMRT) is becoming an increasingly routine treatment method. IMRT can be delivered by use of conventional Multileaf Collimators (MLCs) and/or physical compensators. One of the most important factors in selecting an appropriate IMRT technique is integral dose. Integral dose is equal to the mean energy deposited in the total irradiated volume of the p...
متن کاملQuantitative analysis of brass compensators for commissioning of the Pinnacle planning system for IMRT
Brass compensators for beam modulation present an alternative method for IMRT treatment planning to traditional dynamic leaf modulation. In this work, we present a detailed method to commission the Pinnacle treatment planning system for IMRT using brass compensators. Beam attenuation from various brass thicknesses were measured using an ion chamber, as well as a MapCHECK device, for a represent...
متن کاملDosimetric Evaluation of Volumetric Modulated Arc Therapy (VMAT) and Intensity Modulated Radiotherapy (IMRT) Using AAPM TG 119 Protocol
Background: The commissioning accuracy of Volumetric Modulated Arc Therapy (VMAT) need to be evaluated.Objective: To test and evaluate commissioning accuracy of VMAT based on the TG 119 protocols at local institution. Material and Methods: The phantom, structure sets, VMAT and IMRT beam parameter setup, dose prescriptions and planning objectives were following TG 119 guidelines to c...
متن کاملThree-dimensional gel dosimetry for dose volume histogram verification in compensator-based IMRT
Background: Some tissues in human body are radiobiologically different from water and these inhomogeneity must be considered in dose calculation in order to achieve an accurate dose delivery. Dose verification in complex radiation therapy techniques, such as intensity‐modulated radiation therapy (IMRT) calls for volumetric, tissue equivalent and energy independent dosimeter. The purpose of this...
متن کاملAssessment and Comparison of Homogeneity and Conformity Indexes in Step-and-Shoot, Compensator-Based Intensity Modulated Radiation Therapy (IMRT) and Three-Dimensional Conformal Radiation Therapy (3D CRT) in Prostate Cancer
Introduction: Intensity modulated radiation therapy (IMRT) and three-dimensional conformal radiation therapy (3D CRT) are two treatment modalities in prostate cancer, which provide acceptable dose distribution in tumor region with sparing the surrounding normal tissues. IMRT is based on inverse planning optimization; in which, intensity of beams is modified by using multileaf c...
متن کامل